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Abstract

Trigeneration is a booming power production technology where three energy commodities are simultaneously produced
in a single integrated process. Electric power, heat (e.g. hot water) and cooling (e.g. chilled water) are three typical energy
commodities in the trigeneration system. The production of three energy commodities follows a joint characteristic. This
paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected
subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem.
The linear cost function poses the convergence challenge to the LR algorithm and the joint characteristic of trigeneration
plants makes the operating region of trigeneration system more complicated than that of power-only generation system
and that of combined heat and power (CHP) system. We develop an effective method for the long-term planning problem
based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on
deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution.
Numerical results based on realistic production models show that the algorithm is efficient and near-optimal solutions
are obtained.
� 2007 Published by Elsevier B.V.
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1. Introduction

With the competitive and economic pressures to cut expenses, increase air quality, and reduce emissions of
air pollutants and greenhouse gasses, the trigeneration power and energy system is becoming a preferred
method to produce clean energy and power for buildings (school, offices, hotel, shopping centers, and hospi-
tal) and manufacturing plants. Trigeneration is the conversion of the primary energy source (fuel) into three
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useful energy commodities in a single integrated process. Three energy commodities can take different forms
based on the specific applications and the production of the energy commodities follows a joint characteristic.
Trigeneration is typically defined as the simultaneous production of electric power, heat and cooling. Trigen-
eration takes combined heat and power (CHP, simultaneous production of heat and power) technology one
step by utilizing the waste heat in process to produce cooling. Many industries and commercial buildings need
trigeneration. For example, trigeneration of power, steam or thermal oil, and chilled water for the plastic and
rubber industry, trigeneration of quality UPS (uninterruptible power supply), steam and chilled water for the
semiconductor industry and trigeneration of power, steam/hot water and chilled water for a district heating
and cooling system (Active, 2000). Trigeneration can achieve higher total energy efficiency than what is pos-
sible by producing the three commodities separately or by CHP technology. Therefore, it can save both fuel
and emissions. Goodell (2002) illustrated using a simple trigeneration plant prototype that trigeneration can
save about 24.5% of primary energy than CHP.

Besides trigeneration plants, a trigeneration system may contain CHP plants and plants for producing dif-
ferent energy commodities separately such as condensing plants, hydropower, heat plants, cooling devices as
well as various purchase and sale contracts for externally produced energy. Most relevant for this paper, we
consider possible energy storages (hot water and chilled water tanks) for two other commodities except power
in the system. The incorporation of energy storage can increase the flexibility of the system operation. Under
the deregulated power market, power is produced to respond to power market price and two other energy
commodities are produced to satisfy demands. The storages can be used to maximize the power production
in CHP plants and trigeneration plants when power price is high and they can also be used to minimize
the use of plants with higher operational costs. That is, the storage devices can store the produced energy dur-
ing cheap periods and release the stored energy during expensive periods.

The joint characteristic of the trigeneration makes the operating region of trigeneration plants three-dimen-
sional, which is more complicated than that of CHP (two-dimensional) and power-only generation. The
power-only generation system and CHP system can be viewed as a special case of trigeneration systems (Rong
and Lahdelma, 2005c; Rong, 2006). Particularly, under the deregulated market, CHP system can be reduced to
one-dimensional system (heat) with power generation responding to power price (Rong and Lahdelma,
2007a). Similarly, the trigeneration system can be reduced to two-dimensional systems. The determination
of the feasible region is trivial for one-dimensional line but elaborate for two-dimensional area.

The incorporation of energy storage introduces dynamic constraints in the system. Based on different appli-
cation backgrounds and systems, various approaches have been proposed to solve these types of problems.
Here our emphasis is placed on the approaches for dealing with storage constraints. Based on the extensive
survey of literature, many publications address the energy storage (pumped-storage) for power-only genera-
tion systems such as hydro or hydro-thermal systems and some address energy storage (chilled or hot water
tank) for CHP systems. The solution approaches follow two lines. The first line decouples the time-dependent
storage constraints and the solution of the overall multi-period large-size problem is reduced to the solution of
multiple small-size well-structured single-period subproblems. The solution approaches include Lagrangian
relaxation (LR) methods (Dotzauer and Ravn, 2000; Guan et al., 1994; Ngundam et al., 2000) and dynamic
programming (DP) methods (Ferrero et al., 1998; Gorenstin et al., 1992; Korpaas et al., 2003; Pereira, 1989;
Yang and Chen, 1989). The second line treats the multi-period storage problem (subproblem) as an entity and
solves it by Simplex method (Bos et al., 1996), interior point method (IPM) (Medina et al., 1997) and network
flow method (Ferrerira et al., 1989). The application of the evolutionary programming (Lai et al., 1998) should
also be classified in this category.

In this paper, we consider the medium- and long-term trigeneration planning with storages under the dereg-
ulated power market without unit commitment (UC) involvement. This problem specification is useful in risk
analysis in conjunction to long-term strategic decision-making. In this context, it is acceptable that the UC
sub-problems are solved approximately using some heuristics (Voorspools and D’haeseleer, 2003) and thus
we can place the emphasis on the economic dispatch problem (Rong and Lahdelma, 2007c). The introduction
of the competitive market implies that the actors such as producers, traders, distributors and end customers in
the market are exposed to substantial risks caused by volatile market situations. A simple and effective method
for risk analysis based on the analysis of randomly generated scenarios of power price and energy demand
profiles (Breipohl et al., 1994; Makkonen and Lahdelma, 1998, 2001; Rong and Lahdelma, 2005b, 2007b).
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In each scenario, a deterministic long term planning model is solved. With randomly generated simulation
scenarios, the robustness and speed of algorithms for solving deterministic problems are imperative. Under
such application context, the decoupling technique is favorable because the size of the problem can become
very large with long planning horizon and the computational requirements are expensive for directly solving
the large-size problem.

Here we deal with trigeneration planning problems (Rong and Lahdelma, 2005a,c; Rong, 2006) with sto-
rages based on the LR decomposition framework. The LR procedure decomposes the original problem into
multiple underlying Lagrangian subproblems (LS). Based on different application backgrounds, the LS of the
integrated energy production (cogeneration of more than one energy commodities) planning problems can be
represented as linear programming (LP)/mixed integer linear programming (MILP) models (Dotzauer, 2003;
Gardner and Rogers, 1997; Grohnheit, 1993; Lahdelma and Hakonen, 2003; Lahdelma and Rong, 2005; Mak-
konen, 2005; Rong, 2006; Rong and Lahdelma, 2005c) or non-linear programming (NLP) (e.g. quadratic pro-
gramming) models (Dotzauer, 2001; Dotzauer and Ravn, 2000; Song et al., 1999). We adopt the LP-based
(including MILP) modeling techniques (Rong and Lahdelma, 2005a,c; Rong, 2006). The benefit of LP-based
models is that we have reliable and quite efficient algorithms such Simplex algorithms (Dantzig, 1963) and
IPM (Karmarkark, 1984) for solving the underlying generic LP problems. In conjunction with the specialized
modeling techniques for some application contexts, we have also developed extremely efficient algorithms for
solving the structured LP/MILP problems (Lahdelma and Hakonen, 2003; Makkonen and Lahdelma, 2006;
Rong and Lahdelma, 2005a, 2006, 2007a; Rong et al., 2006). To solve the large-scale LP-based problems in
the complicated settings (dynamic constraints) efficiently, it is desirable to utilize efficient LP solvers
intelligently.

However, LP problems pose challenge for the LR technique because linear cost function can result in a
rather slow and unsteady convergence (Sherali and Ulular, 1989) when the pure subgradient method is used
to solve the Lagrangian dual (LD) problem. There are several alternatives to overcome this difficulty. Firstly,
the augmented LR technique (Beltran and Heredia, 2002; Wang et al., 1995) is used by introducing quadratic
penalty terms to the objective function. Secondly, the non-linear approximation (quadratic function) (Guan
et al., 1995) is used to approximate the linear function. Thirdly, the bundle method (BM) (Redondo and Con-
ejo, 1999; Zhang et al., 1999) and analytical center cutting plane method (ACCPM) (Gondzio et al., 1997) are
used to generate the search directions better than those by the subgradient method. All of these methods can
enhance the convergence of the algorithm. However, the first two methods make the efficient LP solvers inva-
lid because of the introduction of the quadratic terms. BM and ACCPM require much more computational
effort to obtain the proper search directions.

In this paper we enhance the convergence of the algorithm for solving the LD problem by using a compu-
tationally-efficient deflected subgradient method (Sherali and Ulular, 1989) in conjunction with the proper
transformation of storage constraints for forming the LS based on the problem characteristics. We do not
introduce any penalty terms in forming the LS. The resultant LS can be solved using any generic LP solvers
as well as the efficient specialized tri-commodity simplex (TCS) algorithm (Rong and Lahdelma, 2005a).
Finally, we should observe that almost all of the LR algorithms except a few like the volume algorithm (Bar-
ahona and Anbil, 2000) may generate an infeasible LD solution because of the relaxed constraints. It is not a
trivial issue to restore the feasibility for our problem because of the joint characteristics of the trigeneration
plant. To obtain a good feasible solution, we develop a heuristic considering the loss factor, charge/discharge
efficiency of the storage and the feasible region of the system that must be constructed explicitly.

2. Problem formulation

In most cases, trigeneration can be viewed as a technology that takes CHP production one step by utilizing
the waste heat in the process to produce cooling (e.g. chilled water) for air conditioning or industrial process.
Utilization of trigeneration technology can result in significant energy savings when all of the three commod-
ities are used. Under the deregulated power market, we assume that energy producers are price takers. With
the term price-taker, we refer to any firm that has slight weight to change the market price by means of its
offers. That is, the price clearing process is represented as exogenous to the company’s optimization program.
The planning of a trigeneration system is based on hourly load forecast for heat and cooling as well as power
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price. The hourly production level in the plants should be adjusted based on power price, demands for two
other commodities and production cost.

The key to successful trigeneration is to design the plant according to the demands of heat and cooling. The
primary concern of the trigeneration is to produce heat and cooling to satisfy variable demands. A trigener-
ation system may include trigeneration plants, CHP plants and plants for producing different energy commod-
ities separately to make the system more flexible and reliable under variable demands. Incorporation of energy
storages such as hot/chilled water tanks can further increase the flexibility of system operation. Since the pro-
duction of different energy commodities in the trigeneration and CHP plants follows a joint characteristic, the
storage devices can be used to maximize power production in trigeneration and CHP plants during peak
power price periods and they can also used to minimize the use of the plants with higher operational costs.
That is, the storage devices can enable the storage of produced heat/cooling during the cheap periods and
release of the stored heat/cooling during the expensive periods. The objective function of the trigeneration sys-
tem is to minimize the overall net acquisition costs for power and other energy commodities. The net acquisi-
tion costs consist of actual production costs (fuel costs), costs for purchasing components minus revenue from
selling the produced energy.

2.1. Modeling a generic trigeneration plant

For a generic trigeneration plant model, we use the generic cogeneration plant (simultaneous production
two or more energy commodities) model presented by Rong (2006) and Rong and Lahdelma (2005c). The
modeling technique is the extension of the CHP plant model (Lahdelma and Hakonen, 2003; Makkonen
and Lahdelma, 2006) to accommodate any number of commodities. The joint characteristic of the trigenera-
tion plant can either be convex or non-convex. The convex characteristic means that characteristic operating
region of the plant is convex in terms of three energy commodities (p, q, r) (e.g. power, heat and cooling) and
the production cost c is a convex function of the generated energy commodities. Then the convex characteristic
operating region can be represented as a convex combination (see e.g. Bazaraa and Shetty, 1993) of extreme
points (cj,pj,qj, rj) (cost, power, heat and cooling) that define the region. An example of the extreme points
for the traditional generic backpressure plant is given in Table 1.

For the advanced production technologies such as gas turbine and combined gas and steam cycles, the char-
acteristic operating region may be non-convex. A non-convex characteristic can be divided into multiple con-
vex sub-regions, which are encoded as alternative model components (Makkonen and Lahdelma, 2006;
Rong, 2006; Rong and Lahdelma, 2005c, 2006). The same modeling technique applies also to other
energy acquisition components, such as separate heat, cooling and power plants, purchase contracts, and

Table 1
Extreme points of a generic backpressure plant

c p q r

732.11 80.62 1.56 200
632.58 72.73 0 181.82
732.11 68.51 171.28 0
732.11 62.43 200 0
732.11 52.38 135 200
732.11 45.5 200 142.22
390 45.16 112.89 0
390 39.95 137.5 0
390 33.04 92.81 137.5
390 28.31 137.5 97.78
108.42 0 34.62 24.62
97.89 0 20.77 30.77
86.13 0 26.47 0
71.3 0 0 21.05

c – cost, p – power, q – heat, r – cooling.
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demand-side-management components. Consequently, the convex and non-convex characteristic can be mod-
eled as linear programming (LP) and mixed integer linear programming (MILP) model respectively. When the
decomposition techniques such as Lagrangian relaxation (LR) method are used to solve the problem, the over-
all problem decomposes into hourly models for solution. Therefore, the overall solution approach would be
same for both convex and non-convex model and only the solvers for solving the hourly model are different.
That is, LP/MILP solvers are used for solving the hourly convex/non-convex models respectively. In the fol-
lowing system model, we assume that the plant characteristic is convex.

2.2. Modeling trigeneration system

The following notations are introduced to formulate the problem.

p, q, r Super/subscripts or prefixes for three energy commodities in the system
t Refer to either a period or a point in time. The period t is between point t � 1 and t. In our

problem, one period is one hour
T Number of periods over the planning horizon

Index sets

B Set of q and r-commodity, i.e. B ¼ fq; rg. The major purpose of introducing this set is to
simplify the representation because of the symmetry of q and r-commodity

Ju Set of extreme points of the operating region of plant u

Jt Set of extreme points of the operating regions of all plants committed in period t.
ðJ t ¼

S
u2Ut

JuÞ
Ut Set of all plants committed in period t

Parameters

ðcj;t; pj;t; qj;t; rj;tÞ Extreme point j 2 Ju of operating region of plant u (cost, power, q-commodity, r-
commodity) in period t

cp;t Power price on market in period t

hb;s; hb;e Initial and terminal b-storage level, b 2 B
hb; �hb Minimum and maximum b-storage level, b 2 B
Qt;Rt q- and r-commodity demand in period t
xb�;�xb� Minimum and maximum charge/discharge rate of b-storage (MW/hour), b 2 B
qb Fraction loss for b-storage, b 2 B
gb� Charge/discharge efficiency of b-storage, b 2 B

Decision variables

xj;t Variables encoding the operating level of each plant in terms of extreme points in period t,
j 2 J t

xp;t Net power level in period t
xb�;t Charge/discharge rate of b-storge in period t, b 2 B

State variables

hb;t�1 b-storage level at the beginning of period t, b 2 B.

Then the trigeneration planning with storages can be formulated as follows.

Min
XT

t¼1

X
j2J t

cj;txj;t � cp;txp;t

 !
ð1Þ

s:t:
X
j2Ju

xj;t ¼ 1; u 2 Ut; t ¼ 1; . . . ; T ; ð2Þ
X
j2J t

pj;txj;t � xp;t ¼ 0; t ¼ 1; . . . ; T ; ð3Þ
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X
j2J t

qj;txj;t � xqþ;t þ xq�;t ¼ Qt; t ¼ 1; . . . ; T ; ð4Þ
X
j2J t

rj;txj;t � xrþ;t þ xr�;t ¼ Rt; t ¼ 1; . . . ; T ; ð5Þ

hb;t ¼ ð1� qbÞhb;t�1 þ gbþxbþ;t �
xb�;t

gb�
; b 2 B; t ¼ 1; . . . ; T ; ð6Þ

hb;0 ¼ hb;s; b 2 B; ð7Þ
hb;T ¼ hb;e; b 2 B; ð8Þ
hb 6 hb;t 6

�hb; b 2 B; t ¼ 1; . . . ; T � 1; ð9Þ
xb� 6 xb�;t 6 �xb�; b 2 B; t ¼ 1; . . . ; T ; ð10Þ
xj;t P 0; j 2 J t; t ¼ 1; . . . ; T : ð11Þ

In this formulation, the convex combination for each plant is encoded by a set of xj;t variables, indicating the
operating level of each plant in terms of extreme points of the operating region, whose sum is one (2) and that
are non-negative (11). The power balance (3) determines the net amount of power xp;t that can be traded on the
market at price cp;t. Constraints (4) and (5) state the energy balances for q- and r-commodity in the system
considering the charge/discharge of the energy storages. Constraints (6) are storage dynamics of q- and r-com-
modities. Constraints (7)–(10) are terminal conditions or boundary constraints associated with storages. If
only the storage of one commodity exists, then only the dynamics and constraints addressing the correspond-
ing commodity are active.

In the above model, the objective function (1) with constraints (2)–(5) and constraints (10), (11) forms the
trigeneration planning model without dynamic constraints under the deregulated power market (Rong and
Lahdelma, 2005a).

3. Constructing feasible operating region of trigeneration system

Under the deregulated power market, the power production responds to price and the production of q- and
r-commodity satisfies demands. For the LR-based technique to solve the planning problem by relaxing q- and
r-storage constraints, we need to know the feasible region defined by q- and r-commodity for the system to
obtain the feasible solution from the LD solution. For the power-only system or the CHP system (under
the deregulated market) the feasible region is trivially one-dimension line. For the trigeneration system, the
feasible region of the trigeneration plant in terms of q- and r-commodity generation can be a two-dimensional
area or one-dimensional line based on the specific plant characteristic as shown in Fig. 1. The points in Fig. 1
represent the projection of the extreme points of a trigeneration plant in (q, r)-plane.
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Fig. 1. The feasible region of a trigeneration plant u in (q, r)-plane.
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For a plant u which produces q- and r-commodity simultaneously (Fig. 1a), we define r ¼ f u;qðqÞ and
r ¼ �f u;qðqÞ as the lower and upper envelopes of (q, r)-region in terms of q. The points with cross marks are
those not on the envelope and the points with dot marks are those on the envelopes. f u;qðqÞ, which consists
of points 1, 2, 3, 4, and 5, is a piecewise linear convex function in terms of q. �f u;qðqÞ, which consists of points
1, 8, 7, 6, and 5, is a piecewise linear concave function in terms of q. Similarly, we can define q ¼ f u;rðrÞ and
q ¼ �f u;rðrÞ as the lower and upper envelopes of (q, r)-region in terms of r. f u;rðrÞ consists of points 7, 8, 1, 2 and

3 and �f u;rðrÞ consists of points 7, 6, 5, 4 and 3. For a given q, [f u;qðqÞ,�f u;qðqÞ] is the feasible interval for r-com-
modity; for a given r, [f u;rðrÞ,�f u;rðrÞ] is the feasible interval for q-commodity.

For a plant that does not produce q- and r-commodity simultaneously (Fig. 1b and c), the feasible region is
trivially one-dimensional line. This situation is similar to that for the CHP system. The feasible interval is
determined by the extreme points with minimum and maximum coordinate values for the corresponding com-
modity. There are only two points on the envelope. We view this special situation as either the upper or lower
envelopes coincide or only the lower envelope exists. The power-only component does affect the operating
region in (q, r)-plane. The algorithm to construct the lower and upper envelopes of a plant u in (q, r)-plane
is similar to that given by Rong and Lahdelma (2007a).

After the envelopes of each plant are constructed, we need to construct the envelopes of the system because
energy storages affect system-wide energy balance. Based on the characteristic of envelopes, the first and the
last points of lower and upper envelopes coincide. To compound the envelopes of two plants, only the super-
position of the points on the lower envelopes of two plants can become the candidates of the points on com-
pounded lower envelopes. Similarly, only the superposition of the points on the upper envelopes can become
the candidates of the points on the compounded upper envelopes. Therefore, the compounded envelopes of
multiple plants can be constructed by sequentially compounding the points on the lower and upper envelopes
of the plants. Fig. 2 illustrates the compounded envelope of two plants.

For the trigeneration system, we define r ¼ f qðqÞ and r ¼ �f qðqÞ as the lower and upper envelopes of (q, r)-
region in terms of q and q ¼ f rðrÞ and q ¼ �f rðrÞ as the lower and upper envelopes of (q, r)-region in terms of r.

4. Solution approaches

4.1. Lagrangian relaxation framework

The basic idea of Lagrangian relaxation (LR) technique is to relax the complicating constraints in the sys-
tem by using Lagrangian multipliers and formulate a two-level structure. At the lower level, the well-struc-
tured Lagrangian subproblems (LS), which are easy to solve, are formed and solved. At the upper level,
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the Lagrangian multipliers are updated in the direction so that the objective function of Lagrangian dual (LD)
problems can be improved. For a successful use of the LR approach, firstly, an appropriate LS formulation
has to be constructed. i.e. which constraints are relaxed and how are the constraints relaxed. Secondly, an
appropriate non-differentiable optimization techniques (NDO) such as some variants of subgradient based
techniques, bundle method (BM) (Redondo and Conejo, 1999; Zhang et al., 1999) and analytical center cut-
ting plane method (ACCPM) (Gondzio et al., 1997) must be employed to solve the LD problem. The
employed methods depend on many factors such as problem characteristics and modeling techniques.

4.2. Lagrangian decomposition

In our problem, storage dynamics (6) and partial of the related constraints (8)–(10) are complicating con-
straints depending on different LS formulation because the storage dynamics introduces the coupling relation-
ship from period to period. For CHP planning with storage, Dotzauer and Ravn (2000) introduced
Lagrangian multipliers to directly relax equality storage dynamics (similar to (6)) and adopted the forward
projection method to calculate the subgradient and backward projection method to update the Lagrangian
multipliers. In their situation, the cost function is represented as the quadratic function of produced energy
and the algorithm converges. However, this approach shows slow convergence drawback for our problem.
There may be two reasons for this phenomenon. First, the projection method to update the Lagrangian mul-
tipliers is in essence a pure subgradient method, which is prone to result in zigzagging phenomenon and crawl
toward optimality. Second, the equality constraints are ‘‘hard’’ constraints because the corresponding
Lagrangian multipliers associated with the constraints have no restrictions on sign and the oscillation in
the LD solution is prone to occur. The effect of above mentioned drawbacks on the quadratic function is weak
and serious on the linear cost function.

Here we represent the storage level in each time point t using charge/discharge rate up to period t by elim-
inating the storage level variables in all of previous periods based on recursive substitution of dynamics (6).
Then the relaxation is exercised on constraints (8) and (9) based on the transformed storage level. This
approach is similar to that by Guan et al. (1994) but the derivation is a little bit complicated because of
the storage loss. Let

ab;t ¼ gbþxbþ;t �
xb�;t

gb�
; b 2 B: ð12Þ

Based on (6),

hb;t ¼ ð1� qbÞ
thb;0 þ

Xt�1

i¼0

ab;t�ið1� qbÞ
i
; b 2 B; t ¼ 1; . . . ; T : ð13Þ

By substituting the above equation into (9) and (8) we can obtain

�hb � ð1� qbÞ
thb;0 6

Xt�1

i¼0

ab;t�ið1� qbÞ
i
6 hb � ð1� qbÞ

thb;0; b 2 B; t ¼ 1; . . . ; T � 1; ð14Þ

and

XT�1

i¼0

ab;T�ið1� qbÞ
i ¼ hb;T � ð1� qbÞ

T hb;0; b 2 B: ð15Þ

We introduce a set of multipliers kb;tðP 0Þ; lb;tðP 0Þ; bb (b 2 B, t = 1, . . . ,T � 1) to relax (14) and (15). Then
the cost function (1) becomes

L ¼
XT

t¼1

X
j2J t

cj;txj;t � cp;txp;t

 !
þ
XT�1

t¼1

X
b2B

kb;t

Xt�1

i¼0

ab;t�ið1� qbÞ
i þ ð1� qbÞ

thb;0 � �hb

 ! 

þ lb;t hb �
Xt�1

i¼0

ab;t�ið1� qbÞ
i � ð1� qbÞ

thb;0

 !!
þ
X
b2B

bb

XT�1

i¼0

ab;T�ið1� qbÞ
i þ ð1� qbÞ

T hb;0 � hb;T

 !
:

ð16Þ
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Then we define the stage-wise function sðxt; ab;tÞ as

sðxt; ab;tÞ ¼
X
j2J t

cj;txj;t � cp;txp;t þ
X
b2B

XT�1

i¼t

ð1� qbÞ
i�tðkb;i � lb;iÞ þ bbð1� qbÞ

T�t

 !
ab;t; t ¼ 1; . . . ; T � 1;

ð17Þ
and

sðxT ; ab;T Þ ¼
X
j2JT

cj;T xj;T � cp;T xp;T þ
X
b2B

bbab;T ; ð18Þ

where vectors xt consist of xj;t (j 2 J tÞ and xp;t in period t = 1, . . . ,T.
Define vectors kb ¼ ½kb;1; . . . ; kb;T�1�, lb ¼ ½lb;1; . . . ; lb;T�1�, b 2 B. By using the duality theorem (Bazaraa

and Shetty, 1993) and exploiting the decomposable structure in (16) and then regrouping terms in (16) accord-
ing to periods and using the stage-wise function defined in (17) and (18), a two-level maximum–minimum opti-
mization problem can be formed. The low-level LS can be formed as

Uðkb; lb; bbÞ ¼Min Lðkb; lb; bbÞ with Lðkb; lb; bbÞ ¼
XT

t¼1

sðxt; ab;tÞ

þ
X
b2B

XT�1

t¼1

ðkb;t � lb;tÞð1� qbÞ
thb;0 � kb;t

�hb;t þ lb;thb;t

� �
þ bbð1� qbÞ

T hb;0 � bbhb;T

 !
: ð19Þ

Subject to (2)–(5) and (10), (11).
Given kb;t; lb;t; bb; b 2 B, in each stage (period), each stage problem can be solved independently. Min

sðxt; ab;tÞ can be solved efficiently by the Tri-Commodity Simplex (TCS) algorithm (Rong and Lahdelma,
2005a) specialized for trigeneration planning problem. A generic LP solver can also, in principle, be used
to solve the resultant LS. The difference lies in the computational speed. We demonstrate this later in numer-
ical experiments.

Then high-level LD problem can be represented as

Max Uðkb; lb; bbÞ
Subject to kb P 0; lb P 0; b 2 B:

ð20Þ

4.3. Solution to Lagrangian dual problem

Subgradient method is one of the commonly used methods for solving LD problems (Bazaraa and Shetty,
1993). Pure subgradient method suffers from the drawback of zigzagging phenomenon that might results in
slow and unsteady convergence. BM (Redondo and Conejo, 1999; Zhang et al., 1999) and ACCPM (Gondzio
et al., 1997) can provide search directions better than the subgradient method. However, much more compu-
tational effort is needed to obtain the related search directions. In terms of LR method for solving the generic
large scale LP problem, average direction strategy (ADS) (Sherali and Ulular, 1989), one of the deflected sub-
gradient optimization methods, can yield an effective and robust scheme for most part. The deflected subgra-
dient method deflects the current subgradient by combining with the previous search direction. The search
direction dk at current iteration k can be represented as

dk ¼ gk þ wkdk�1; ð21Þ

where wk P 0 is a deflection parameter, and gk is the current subgradient.
In ADS,

wk ¼ kg
kk

kdk�1k
: ð22Þ

That is, the search direction bisects the angle formed by current subgradient and the previous search direction.
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For our problem, we define d and g as follows.

d ¼ ½dq;1; . . . ; dq;T�1; dq;T ; dq;Tþ1; . . . ; dq;2T�1; dr;1; . . . ; dr;T�1; dr;T ; dr;Tþ1; . . . ; dr;2T�1�; ð23Þ
g ¼ ½gq;1; . . . ; gq;T�1; gq;T ; gq;Tþ1; . . . ; gq;2T�1; gr;1; . . . ; gr;T�1; gr;T ; gr;Tþ1; . . . ; gr;2T�1�: ð24Þ

Where the components of g are computed based on (20) associated with (16)–(19)

gb;t ¼
Xt�1

i¼0

ab;t�ið1� qbÞ
i þ ð1� qbÞ

thb;0 � �hb; b 2 B; t ¼ 1; . . . ; T � 1; ð25Þ

gb;T ¼
XT�1

i¼0

ab;t�ið1� qbÞ
i þ ð1� qbÞ

T hb;0 � hb;T ; b 2 B; ð26Þ

gb;tþT ¼ hb �
Xt�1

i¼0

ab;t�ið1� qbÞ
i � ð1� qbÞ

thb;0; b 2 B; t ¼ 1; . . . ; T � 1: ð27Þ

Then the Lagrangian multipliers for the next iteration k + 1 kkþ1
b;t ; lkþ1

b;t ; bkþ1
b can be updated by moving along

the search direction with step-size nk (nk > 0).

kkþ1
b;t ¼ maxf0; kk

b;t þ nkdk
b;tg; b 2 B; t ¼ 1; . . . ; T � 1; ð28Þ

bkþ1
b ¼ bk

b þ nkdk
b;T ; b 2 B; ð29Þ

lkþ1
b;t ¼ maxf0; lk

b;t þ nkdk
b;Tþtg; b 2 B; t ¼ 1; . . . ; T � 1: ð30Þ

Step-length rules also play an important role in governing both the ultimate convergence and the rate of con-
vergence to the optimality. We adopted the following rules for updating step-size n. If there is no improvement
for the LD solution for a given number of iterations, the current n is decreased by multiplying a degrading
factor c ð0 < c < 1Þ. Now we summarize the procedures for solving the LD problem.

Algorithm 1. Deflected subgradient based LR algorithm

Step 0. Initialization
Degrading factor c, small positive values e and d; Best dual value zbd = �M (M is a large positive num-
ber); Best solution vector x� ¼ ; for decision variables; Given improvement iterations l0 ; improve-
ment iteration counter i = 0; LD iteration counter k = 1; Initial multipliers k1

b;t; l
1
b;t; b

1
b (b 2 B,

t ¼ 1; . . . T � 1), step-size n1, and search direction vector d0 ¼ 0.
Step 1. Calculate dual function Uðkk

b; l
k
b; b

k
bÞ by solving (19).

Step 2. Termination condition
if (jUðkk

b; l
k
b; b

k
bÞ � zbdj < d or nk < e)

go to end;
endif

Step 3. Update best dual solution and step-size nk

if(Uðkk
b;l

k
b; b

k
bÞ > zbdÞ

zbd  Uðkk
b; l

k
b; b

k
bÞ

update x*

i = 0
else

i iþ 1
endif

if (i P l0)
nk  cnk

endif

A. Rong et al. / European Journal of Operational Research 188 (2008) 240–257 249



Author's personal copy

4.4. Obtaining feasible solutions

In general, the LD solution is associated with an infeasible solution because some of the relaxed constraints
cannot be satisfied. In the LS formulation, we relax the boundary constraints and terminal conditions for sto-
rages. Therefore, in the infeasible solution, the storage level can be lower than lower bound (generally zero) or
higher than upper bound (capacity) of the storages or the terminal conditions for storages cannot meet. A heu-
ristic method is developed to obtain a good feasible solution by considering the dual price of energy produc-
tion, energy loss and the charge/discharge efficiency of the storage.

In the LD solution, let xð1Þbþ;t=xð1Þb�;t ðb 2 BÞ represent the charge/discharge rate in each period t , aq;t and ar;t the
dual price of energy balances (4) and (5). The physical meaning of dual price for (4) and (5) are the marginal
cost for producing q- and r-commodity respectively. For restoring the feasibility of the storage level cost-effi-
ciently, we need to determine the priority order of periods to absorb energy surplus or supply energy lack. The
relative value of energy production cost is more meaningful than the absolute value when there is energy stor-
age loss. We use weighted dual price (WDP) a0q;t and a0r;t as the measure of relative production cost of q- and r-
commodity in period t. WDP is determined by considering the energy loss and charge/discharge efficiency

a0b;t ¼ ð1� qbÞ
tab;tgb�;t if xð1Þb�;t > 0;

a0b;t ¼ ð1� qbÞ
tab;t=gbþ;t if xð1Þbþ;t > 0

(
: ð31Þ

When both xð1Þb�;t and xð1Þbþ;t equal zero, then the WDP is calculated based on the first formula in (31) if per-
iod t is chosen as the adjustment period for increasing discharge and the second formula for increasing
charge.

The above relationship means that the energy loss can be explained as either the loss of storage volume or
loss of monetary value. Intuitively, the stored energy should be released as early possible when WDP is higher.
The lack energy should be supplied by the production and storage in later periods when WDP is lower. When
the storage level needs increasing, the periods with lowest WDP should be given priority while the periods
with the highest WDP should be given priority when the storage level needs decreasing. The following heu-
ristic procedures are designed based on these intuitive ideas. If both q- and r-storages are active, we use
sequential strategy to restore the feasibility. First the feasibility for q-storage is restored, then r-storage, or
vice versa.

Step 4. Calculate subgradient gk based on (25)–(27)
Step 5. Calculate search direction dk based on (21) and (22)
Step 6. Update multipliers based on (28)–(30).
Step 7. k  k þ 1, go to Step 1

Algorithm 2. Heuristic procedures for obtaining a good feasible solution.

Step 1. Primal feasibility is restored based on the feasible conditions concerning the storage dynamics (6)–
(10) and feasible regions represented explicitly by the compounded system envelope (Section 3).

for (t := 1 toT)
if (storage level in period t is infeasible)

(1) Sort the periods before t based on the increasing (decreasing) order of WDP if the stor-
age level is less than zero (greater than the capacity in period t).

(2) Check the sorted periods in sequence, for each selected period, as much charge/dis-
charge amount as possible is exercised under the following four conditions: (i) the
adjustment cannot introduce new infeasible periods before t ; (ii) the adjustment cannot
violate the charge/discharge limits (constraints (10)) ; (iii) the adjustment cannot go
beyond the feasible region of the trigeneration system (Section 3) and (iv) no matter
how many periods need adjustment, the combined adjustment is just enough for restor-
ing the feasibility in period t.

end if
end for
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5. Numerical experiments

To test the performance of the deflected subgradient based Lagrangian relaxation (LR) algorithm for tri-
generation planning with storages, we implement the LR algorithm using C++ and Microsoft Visual Studio
with the efficient Tri-Commodity Simplex (TCS) (Rong and Lahdelma, 2005a) as a solver for the low-level
Lagrangian subproblems (LS). The planning problems are solved on hourly basis for different planning hori-
zons: weekly (168-hour), monthly (672-hour) and yearly (8760-hour). For a sub-case of weekly planning prob-
lem, we also solve the planning model (1)–(11) directly using an efficient sparse Simplex code LP2 (Lahdelma
et al., 1986; Ruuth et al., 1985) to obtain the true optimum so that both the computational time and optimality
of the LR algorithm can be compared with that of the standard LP solver. For time comparison, we mention
the relative speed of several LP solvers. For solving the small-size hourly model, TCS is 64 times faster than
LP2 and LP2 is 46 times (Lahdelma and Hakonen, 2003; Rong, 2006; Rong and Lahdelma, 2007a) faster than
ILOG CPLEX 9.0 (the detailed settings of the CPLEX solver are referred to Rong and Lahdelma, 2007a), one
of the widely used commercial solvers for the large-size problem. All test runs are performed in a 2.2 GHz
Pentium 4 PC (512 Mb RAM) under the Windows XP operating system.

5.1. Test problems

Our test problems are based on real-life power plant models. The trigeneration plant models adopted here
are similar to those in Rong and Lahdelma (2005a). In our test models, the number of characteristic points
varies from 10 to 70 per production plant. The production facilities include trigeneration plants and separate
energy production units (including contracts). A total of six production models are generated. Table 2 shows
the structure of the production models and dimensions of planning problems for different planning horizons.
TRIs and Non-TRIs represent the number of trigeneration plants and separate energy production units,
respectively. mh (number of constraints) �nh (number of variables) is the size of the hourly model without
dynamic constraints (refer to (2)–(5)), where mh = TRIs + Non-TRIS+3, nh ¼ jJ j þ 5 (jJj is the total number
of extreme points for all of the plants). The size of the hourly Lagrangian subproblem after the dynamic con-
straints are relaxed is mh · (nh+4) (refer to (19)). m (number of constraints) · n (number of variables) is the size
of the overall planning problem with both q- and r-storages active. Based on models (1)–(11), m ¼ ðmh þ 2ÞT
and n ¼ ðnh þ 6ÞT , the number of multipliers used to form the Lagrangian dual problem (16) is

Step 2. The feasible solution in Step 1 is further improved by exercising the forced discharge to remove the
redundant energy storage.

for (t := 1 toT)
if (t is a period satisfying the following conditions : (i) non-zero charge/discharge period t; and

(ii) after period t, there is no charge/discharge activity for a given number of periods but the
storage levels are non-zero in these periods)
Forced discharge is exercised immediately after t to remove the redundant storage.

end if

end for

Table 2
Structure of production models and dimensions of the planning problems for different planning horizons

Model TRIs Non-TRIs mh nh m n

Weekly Monthly Yearly Weekly Monthly Yearly

A1 1 0 4 72 1008 4032 52,560 13,104 52,416 683,280
A2 2 1 6 109 1344 5376 70,080 19,320 77,280 1,007,400
A3 3 2 8 183 1680 6720 87,600 31,752 127,008 1,655,640
A4 5 3 11 220 2184 8736 113,880 37,968 151,872 1,979,760
A5 8 3 14 270 2688 10,752 140,160 46,368 185,472 2,417,760
A6 10 3 16 364 3024 12,096 157,680 62,160 248,640 3,241,200
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2� 2� ðT � 1Þ þ 2 ¼ 4T � 2, where T is the number of hours over the planning horizon. Table 3 shows the
parameters of q- and r-storages, where �h, �x, g, and q denote the capacity (MW), maximum charge/discharge
rate (MW/hour), charge/discharge efficiency and energy loss of the storage, respectively. The storage param-
eters are same for all of the test problems.

To form valid test problems, we generate q- and r-commodity demand data based on the history data of a
Finnish energy company and power price based on the history data of Nord Pool (Nordic power exchange)
(Nord Pool, 2004).

5.2. Computational results

For measuring the optimality performance of the LR algorithm, three gaps are introduced: GAP, GAP0
and GAP1. GAP ¼ j100ðzbd � zfeaÞ=zbdj (percentage), GAP0 ¼ j100ðzbd � zoptÞ=zoptj (percentage) and
GAP1 ¼ j100ðzopt � zfeaÞ=zoptj (percentage), where zopt, zbd, and zfea represent the true optimal solution, LD
solution and feasible solution respectively. For minimization problem, zbd

6 zopt
6 zfea. GAP is an approxi-

mate gap measure of the feasible solution based on the LD solution. GAP0 measures the tightness of the
LD solution as a lower bound on the optimal solution. GAP1 is a strict gap measure of the feasible solution
based on the true optimal solution. All of these gap measures can reflect the convergence property of the LR
algorithm. However, in practice, GAP is generally used because it is difficult to obtain the true optimal solu-
tion for large-size (monthly, yearly, and multi-year) problems.

We solve the planning problems for different horizons by the LR algorithm. For weekly (168-hour) plan-
ning, we take the average of the results for 8 sub-cases (weeks 1–4 and weeks 20–23). For monthly planning,
we take the average of the results for 4 sub-cases (weeks 1–4, weeks 5–8, weeks 20–23, and weeks 24–27). Jan-
uary 1 is the first day of the week one. To reduce the effect of variation in CPU time, each sub-case of test
problems was run ten times and average solution time (CPU time) is computed. Tables 4 and 5 show the per-
formance for solving weekly, monthly for either q- or r-storage active or both q- and r-storages active, respec-
tively. Table 6 shows the yearly planning for either q- or r-storage active or both q- and r-storages active or no
storage active.

From Tables 4–6, the GAP measure for solving the problem is very small. The average gap for solving
weekly, monthly and yearly planning problems are 0.048%, 0.028% and 0.024%. This means that the LR algo-
rithm converges and the near optimal-solution can be obtained. LDiters (number of iterations to terminate the
solution process of the LD problem) reflects the convergence speed of the LR algorithm. LDiters increases as

Table 4
Performance of the LR algorithm for weekly planning problems

Model Only q-storage active Only r-storage active q- and r-storages active

LDiters CPU (seconds) GAP (%) LDiters CPU (seconds) GAP (%) LDiters CPU (seconds) GAP (%)

A1 60.1 0.035 0.085 40.6 0.026 0.032 62.4 0.045 0.210
A2 57.0 0.043 0.098 40.3 0.028 0.025 68.5 0.055 0.063
A3 64.3 0.102 0.077 42.3 0.069 0.038 67.3 0.123 0.059
A4 54.3 0.130 0.117 48.1 0.123 0.016 64.5 0.169 0.029
A5 57.8 0.160 0.032 43.5 0.113 0.002 63.6 0.179 0.016
A6 57.6 0.332 0.037 44.8 0.264 0.007 62.0 0.369 0.033

Avg. 58.7 0.094 0.078 43.0 0.072 0.018 65.3 0.114 0.049

Table 3
Parameters of q- and r-storages

Parameter q-Storage r-Storage

�h 100 90
�x 20 15
g 0.98 0.95
q 0.04 0.06
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the planning horizon increases based on Tables 4–6. But the increase factors are within a very reasonable
range, less than two from weekly to yearly planning on the average. That means, the convergence speed of
the algorithm is not much sensitive to the planning horizon. The average solution times for the weekly,
monthly and yearly planning problem are 0.093, 0.63 and 11 seconds. The maximum solution time to the larg-
est generated yearly planning problem is about 30 seconds. This is sufficiently fast to make several advanced
analyses feasible, e.g. risk analysis (Makkonen and Lahdelma, 1998, 2001; Rong and Lahdelma, 2005b, 2007b)
based on scenario analysis (stochastic simulation). Based on Table 6, LDiters approximates the ratio of the
CPU time for solving the problem with storage and without storage. This means that the computational
requirement for finding the search direction and updating the Lagrangian multipliers is very small.

Next, we compare the performance of the LR algorithm against a generic LP solver for solving models (1)–
(11) directly. Table 7 shows the performance of the LR algorithm against LP2 for a sub-case (week 1) of
weekly planning problems with active q- and r-storages. We can see that the LD solution provides a very tight
bound on the optimal solution based on GAP0 measure. This again indicates that the convergence property of

Table 6
Performance of the LR algorithm for yearly planning problems

Model Only q-storage active Only r-storage active q- and r-storages active No storage

LDiters CPU
(seconds)

GAP
(%)

LDiters CPU
(seconds)

GAP
(%)

LDiters CPU
(seconds)

GAP
(%)

CPU
(seconds)

A1 119 3.680 0.041 71 2.355 0.030 148 5.642 0.053 0.026
A2 132 4.883 0.009 118 4.438 0.005 150 6.385 0.011 0.032
A3 150 12.435 0.014 87 7.549 0.013 120 11.471 0.022 0.077
A4 115 11.969 0.011 90 9.214 0.001 132 14.641 0.017 0.122
A5 100 12.455 0.004 76 9.219 0.000 77 10.096 0.007 0.121
A6 60 16.777 0.177 96 26.633 0.001 101 29.225 0.007 0.287

Avg. 112.7 10.366 0.052 89.7 9.901 0.005 121.3 12.910 0.014 0.111

Table 7
Performance of the LR algorithm against LP2 for a sub-case of weekly planning problems with active q- and r-storages

Model LP2 LR GAP0 (%) GAP1 (%)

CPU (seconds) zopt CPU (seconds) zbd zfea

A1 17.8 �212909 0.053 �212923 �211425 0.00675 0.69683
A2 69.0 �654202 0.055 �654208 �654195 0.00086 0.00110
A3 85.7 �567720 0.119 �567732 �567718 0.00213 0.00040
A4 234.3 �829521 0.177 �829567 �829343 0.00553 0.02149
A5 347.5 �969699 0.199 �969708 �969624 0.00089 0.00772
A6 627.8 �1041895 0.449 �1041937 �1041759 0.00401 0.01309

Avg. 230.3 �712658 0.175 �712679 �712344 0.00300 0.04403

Table 5
Performance of the LR algorithm for monthly planning problems

Model Only q-storage active Only r-storage active q- and r-storages active

LDiters CPU (seconds) GAP (%) LDiters CPU (seconds) GAP (%) LDiters CPU (seconds) GAP (%)

A1 66.5 0.159 0.125 55.0 0.136 0.031 62.5 0.188 0.243
A2 81.0 0.229 0.021 48.0 0.132 0.063 79.8 0.247 0.032
A3 85.3 0.550 0.039 61.8 0.424 0.018 72.8 0.548 0.076
A4 75.5 0.723 0.028 56.5 0.533 0.002 72.3 0.701 0.022
A5 79.8 0.850 0.006 40.5 0.432 0.011 76.3 0.841 0.011
A6 76.5 1.748 0.012 52.5 1.162 0.003 73.5 1.737 0.035

Avg. 77.4 0.710 0.024 52.4 0.470 0.017 72.8 0.710 0.042
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the LR algorithm is good. Based on small GAP1 measure, we can view the LR solution as the optimal solution
in most cases. GAP1 measure of A1 is a little large, it can be viewed as a good near-optimal solution. A1
contains only one trigeneration plant (Table 2) and the adjustment flexibility is relatively poor. For the
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Fig. 3. Storage dynamics (the adjustment of q-storage level (qH) (MW) and the charge/discharge rate (qR) (MW/hour) during the process
of restoring feasibility from the LD solution). qDual (Euros/MW): dual price of q-energy balance from the LD solution. The number
attaching to qH and qR represents the change of qH and qR. Negative qR represents charging the storage.
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computational speed, the LR algorithm is 1316 faster than LP2 solver for a weekly planning problem (a few
thousand constraints and a few ten thousand variables (Table 2)). As the planning horizon increases, the speed
ratio of the LR algorithm against LP2 can be even larger. Generally it is difficult for a generic LP solver to
solve the large-size problems within the reasonable time limits. Therefore, it is imperative that the decompo-
sition technique should apply for the long-term planning problem.

Finally, we illustrate storage dynamics and the heuristic procedures for restoring feasibility using a sub-case
of monthly planning problems. Fig. 3 shows the adjustment of q-storage level (qH) (MW) and charge/dis-
charge rate (qR) (MW/hour) (negative value represents charging the storage) during the process of restoring
the feasibility after the LD problem was solved. In the meanwhile, we show the profile of the dual price
(qDual) (Euros/MW) of the q-energy balance for the LD solution so that we can analyze the relationship
between the dual price and charging/discharging process. qH0 and qR0 represent the q-storage level and
charge/discharge rate for the LD solution. qH1 and qR1 represent the results after the first step of the heuristic
procedures (Section 4.4). qH2 and qR2 represent the results after the second step of the heuristic procedures
(Section 4.4). We can see that the LD solution (qH0, qR0) provides a roughly reasonable but an infeasible
schedule. There are two periods (hours 199 — 237 and hours 511—577) with higher dual prices (marginal pro-
duction cost for the q-commodity). Before the periods with higher dual price begin, the storage are charged to
full (qH0 reaches the highest level) with the energy produced at lower cost and discharged (qH0 is reduced)
after the periods with higher price begin. That is, the incorporation of the storage can partially alleviate
the higher cost for providing the energy commodity and increase the flexibility of the system operation. How-
ever, we can see that the schedule is infeasible (e.g. qH0) exceeds the storage capacity (100 MW) around hour
200 and 515 because of the overcharge and falls below zero between 3–44 hours, 207–494 hours and 575–654
hours because of the overdischarge. The primal feasibility (qH1 and qR1) is restored after the first step of the
heuristic procedures. But it seems that there are some periods (hours 45–187) with unnecessary non-zero stor-
age level (qH1). Then the forced discharge (the second step of the heuristic procedures) is exercised to empty
the storage and a better feasible solution (qH2, qR2) can be obtained.. For the illustrated monthly planning
problem, the objective functions of the LD solution, intermediate and final feasible solutions are �1994023,
�1991004 and �1991620, respectively.

6. Conclusions

We have solved the Lagrangian relaxation of the long-term trigeneration planning problem with the energy
storage by using a deflected subgradient method. Several considerations contribute to the efficiency and effec-
tiveness of the algorithm: the proper strategy to relax the dynamic constraints (by transformation), the good
convergence property of deflected subgradient method, the heuristic for restoring the feasibility, and the effi-
cient tri-commodity simplex (TCS) for solving the Lagrangian subproblems. In the test run with realistic tri-
generation production models for weekly (168-hour), monthly (672-hour) and yearly (8760-hour) planning
model, the presented LR algorithm shows robust and fast convergence speed based on the number of itera-
tions for solving the Lagrangian dual problem and high solution quality based on both the dual gap and
gap between the feasible solution and the optimal solution. This lays solid foundation for the scenario-based
risk analysis (Makkonen and Lahdelma, 1998, 2001; Rong and Lahdelma, 2005b, 2007b) because both solu-
tion time and solution quality are critical when multiple randomly generated scenarios are solved.
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